Advanced Macroeconomics II

Lecture 8

Consumption: Asset Pricing

Isaac Baley

UPF & Barcelona GSE

February 10, 2016

Roadmap

Consumption with a risky asset

Portfolio choice (many assets)

3 Equity premium puzzle

Consumption with risky asset (1)

Consider the consumption - savings problem:

$$V_{0} = \max_{\{c_{t}\}_{t=0}^{\infty}} \mathbb{E}_{t} \left[\sum_{t=0}^{\infty} \beta^{t} u(c_{t}) \right]$$

- Until now, we had two assumptions:
 - Labor income y_t is risky
 - Wealth a_t is invested at the riskless interest rate r:

$$a_{t+1} = (1+r)a_t + y_t - c_t$$

With this assumptions, we derive the Euler equation:

$$u'(c_t) = (1+r)\beta \mathbb{E}\left[u'(c_{t+1})|y_t\right]$$

Consumption with risky asset (2)

• Suppose instead that you invest in an asset with risky return ξ_t :

$$a_{t+1} = (1 + \xi_t) a_t + y_t - c_t$$

- We assume ξ_t to follow a Markov process.
- Examples:
 - (i) Risky discount bond (i.e. default):

$$\xi_{t+1} = \left\{ egin{array}{ll} R_{t+1} & ext{if repay} \ 0 & ext{if default} \end{array}
ight. \implies \quad \xi_{t+1} = R_{t+1} Pr(\textit{repay})$$

(ii) Shares of a company: One share cost p_t (in units of consumption good), and delivers a stochastic divident d_{t+1} next period:

$$1+\xi_{t+1} = rac{p_{t+1}+d_{t+1}}{p_t} = rac{p_{t+1}}{p_t} + rac{d_{t+1}}{p_t}$$
 capital gains dividend-price ratio

Consumption with risky asset (3): Euler

- Timing:
 - Enter period with a_t.
 - \blacktriangleright ξ_t and y_t are jointly determined at the beginning of period t.
 - ▶ Then household decides consumption c_t . (or new savings a_{t+1}).
- Budget implied by this timing:

$$a_{t+1} = (1+\xi_t) a_t + y_t - c_t$$

• Euler is the same as before, but now that ξ_{t+1} is not known at time t:

$$u'(c_t) = \beta \mathbb{E} [u'(c_{t+1}) (1 + \xi_{t+1}) | y_t, \xi_t]$$

• Divide both sides by $u'(c_t)$:

$$1 = \beta \mathbb{E}_t \left[\frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)} \left(1 + \xi_{t+1}\right) \right]$$

Consumption with risky asset (4): SDF

- Define $M_{t+1} \equiv \beta u'(c_{t+1})/u'(c_t)$ as the stochastic discount factor (SDF).
- Also define $Z_{t+1} \equiv 1 + \xi_{t+1}$ the random return.
- Then Euler equation becomes:

$$1 = \mathbb{E}_t \left[M_{t+1} Z_{t+1} \right]$$

- We will use the Euler for different things:
 - Price assets (i.e. stocks)
 - Establish bounds on returns
- We will often rewrite the expectation of a product as product of expectations plus covariance:

$$1 = \mathbb{E}_{t} \left[M_{t+1} Z_{t+1} \right] = \mathbb{E}_{t} \left[M_{t+1} \right] \mathbb{E}_{t} \left[Z_{t+1} \right] + Cov_{t} \left[M_{t+1}, Z_{t+1} \right]$$

Consumption with risky asset (4): Price of an asset

- Euler equation can be used to derive the market price of assets.
- Let us compute the price of a stock:

$$1 = \mathbb{E}_t \left[M_{t+1} \frac{p_{t+1} + d_{t+1}}{p_t} \right]$$

Opening the expectation:

$$p_{t} = \mathbb{E}_{t}[M_{t+1}]\mathbb{E}_{t}[p_{t+1} + d_{t+1}] + Cov_{t}[M_{t+1}, p_{t+1} + d_{t+1}]$$

- The price of the stock (or bond) is determined by:
 - 1 Expected price plus future dividend (discounted by expected SDF)
 - Risk, but not only the variance, also the covariance with marginal utility of consumption (SDF).
- This is the Consumption Capital Asset Pricing Model (CCAPM).

Stock pricing (1)

Starting from stock Euler:

$$p_t = \mathbb{E}_t \left[M_{t+1} d_{t+1} \right] + \mathbb{E}_t \left[M_{t+1} p_{t+1} \right]$$

• Let's substitute recursively the sequence of $\{p_{t+j}\}_{j=1}^{\infty}$ and using the Law of Iterated Expectations, to obtain:

$$\begin{array}{lll} p_t & = & \mathbb{E}_t \left[M_{t+1} d_{t+1} \right] + \mathbb{E}_t \left[M_{t+1} \left(\mathbb{E}_{t+1} \left[M_{t+2} d_{t+2} \right] + \mathbb{E}_{t+1} \left[M_{t+2} p_{t+2} \right] \right) \right] \\ & = & \mathbb{E}_t \left[M_{t+1} d_{t+1} \right] + \mathbb{E}_t \left[M_{t+1} M_{t+2} d_{t+2} \right] + \mathbb{E}_t \left[M_{t+1} M_{t+2} p_{t+2} \right] \\ & = & \dots \\ & = & \mathbb{E}_t \left[\sum_{j=1}^{\infty} \left(\prod_{s=1}^{j} M_{t+s} \right) d_{t+j} \right] + \lim_{j \to \infty} \mathbb{E}_t \left[\left(\prod_{s=1}^{j} M_{t+s} \right) p_{t+j} \right] \end{array}$$

Stock pricing (2)

- Notice that $M_{t+1}M_{t+2} = \beta \frac{u'(c_{t+1})}{u'(c_t)} \beta \frac{u'(c_{t+2})}{u'(c_{t+1})} = \beta^2 \frac{u'(c_{t+2})}{u'(c_t)}$.
- In general:

$$\left(\prod_{s=1}^{j} M_{t+s}\right) = \beta^{j} \frac{u'\left(c_{t+j}\right)}{u'\left(c_{t}\right)}$$

Hence we obtain the price of the stock:

$$p_{t} = \underbrace{\mathbb{E}_{t} \left[\sum_{j=1}^{\infty} \beta^{j} \frac{u'\left(c_{t+j}\right)}{u'\left(c_{t}\right)} d_{t+j} \right]}_{\text{discounted stream of dividends}} + \underbrace{\lim_{j \to \infty} \mathbb{E}_{t} \left[\beta^{j} \frac{u'\left(c_{t+j}\right)}{u'\left(c_{t}\right)} p_{t+j} \right]}_{\text{bubble term}}$$

Thus the stock price = fundamental value + bubble.

Stock pricing (3): Bubbles

Bubble term:

$$\lim_{j\to\infty} \mathbb{E}_t \left[\beta^j \frac{u'\left(c_{t+j}\right)}{u'\left(c_{t}\right)} p_{t+j} \right]$$

- We will assume no bubble condition: Bubble term = 0
- Usually bubbles can be ruled out in general equilibrium models.
- Bubble may arise in OLG models (i.e. money is a bubble) or in models with borrowing constraints (papers by Martin and Ventura).
- Rational bubbles (wait for Alberto's class)
 - Suppose that $p_t = p_t^* + B_t$
 - p_t is the fundamental value of the asset
 - ▶ B_t is a "rational" bubble, which grows at the constant rate $B_{t+1} = RB_t$

Stock pricing (4): Risk neutral agent

- Assume that the household holding stocks (the "investor") is risk neutral $(u'(c_t))$ is constant) and $R\beta = 1$.
- In this case $M_{t+1}=\beta u'\left(c_{t+1}\right)/u'\left(c_{t}\right)=\beta=\frac{1}{R}$ at any time t.
- Therefore, the pricing equation simplifies to:

$$p_{t} = \mathbb{E}_{t} \left[\frac{d_{t+1}}{R} \right] + \mathbb{E}_{t} \left[\frac{d_{t+2}}{R^{2}} \right] + \dots + \frac{\mathbb{E}_{t} \left[p_{t+j} \right]}{R^{j}}$$

• Assuming no bubble condition $\lim_{j\to\infty} \frac{\mathbb{E}_{\mathbf{r}}(\rho_{t+j})}{R^j} = 0$, we obtain:

$$p_t = \sum_{j=1}^{\infty} rac{1}{R^j} \mathbb{E}_t[d_{t+j}]$$

- The price is the net present value of future dividends.
- Clearly, risk does not affect the price.

Roadmap

Consumption with a risky asset

Portfolio choice (many assets)

3 Equity premium puzzle

Portfolio choice (1)

- For simplicity, we assume no labor income.
- Assume there are two assets:
 - Bonds: risk-free and pay return R.
 - ▶ Stocks: risky and pay return Z_{t+1} (unknown at t).
- Consumer may choose how much to invest in each asset.
- Let ω_t be the fraction in stocks and $1 \omega_t$ in bonds.
- The budget constraint becomes:

$$a_{t+1} = (\omega_t Z_{t+1} + (1 - \omega_t) R) (a_t - c_t)$$

Portfolio choice (2)

Value function:

$$V\left(a_{t}, Z_{t}\right) = \max_{c_{t}, \omega_{t}} u\left(c_{t}\right) + \beta \mathbb{E}_{t}\left[V\left(a_{t+1}, Z_{t+1}\right)\right]$$
$$a_{t+1} = \left(\omega_{t} Z_{t+1} + \left(1 - \omega_{t}\right) R\right) \left(a_{t} - c_{t}\right)$$

FOCs:

$$u'(c_t) - \beta \mathbb{E}_t \left[\left(\omega_t Z_{t+1} + (1 - \omega_t) R \right) \frac{\partial V(a_{t+1}, Z_{t+1})}{\partial a_{t+1}} \right] = 0 \qquad (c_t)$$

$$(a_t - c_t) \beta \mathbb{E}_t \left[\left(Z_{t+1} - R \right) \frac{\partial V(a_{t+1}, Z_{t+1})}{\partial a_{t+1}} \right] = 0 \qquad (\omega_t)$$

Envelope condition:

$$\frac{V\left(a_{t}, Z_{t}\right)}{\partial a_{t}} = \beta \mathbb{E}_{t} \left[\left(\omega_{t} Z_{t+1} + \left(1 - \omega_{t}\right) R\right) \frac{V\left(a_{t+1}, Z_{t+1}\right)}{\partial a_{t+1}} \right]$$

Portfolio choice (3)

• Combining the FOC w.r.t. c_t and the envelope condition:

$$u'\left(c_{t}\right) = \frac{V\left(a_{t}, Z_{t}\right)}{\partial a_{t}}$$

Substituting back into the envelope condition:

$$u'(c_t) = \beta \mathbb{E}_t \left[\left(\omega_t Z_{t+1} + (1 - \omega_t) R \right) u'(c_{t+1}) \right]$$

and opening the expectation (note that ω_t is chosen at t so comes out)

$$u'\left(c_{t}\right) = \omega_{t} \beta \mathbb{E}_{t}\left[Z_{t+1} u'\left(c_{t+1}\right)\right] + \left(1 - \omega_{t}\right) R \beta \mathbb{E}_{t}\left[u'\left(c_{t+1}\right)\right]$$

• From the FOC w.r.t. ω_t (assuming $a_t \neq c_t$)

$$R\mathbb{E}_{t}\left[\frac{V\left(a_{t+1}, Z_{t+1}\right)}{\partial a_{t+1}}\right] = \mathbb{E}_{t}\left[Z_{t+1}\frac{V\left(a_{t+1}, Z_{t+1}\right)}{\partial a_{t+1}}\right]$$

substitute the fact that $u'(c_t) = \frac{V(a_{t+1}, Z_{t+1})}{\partial a_{t+1}}$ and it becomes:

$$R\mathbb{E}_{t}[u'(c_{t+1})] = \mathbb{E}_{t}[Z_{t+1}u'(c_{t+1})]$$

Portfolio choice (4)

So we have two equations:

$$R\mathbb{E}_{t} [u'(c_{t+1})] = \mathbb{E}_{t} [Z_{t+1}u'(c_{t+1})]$$

$$u'(c_{t}) = \beta \{\omega_{t}\mathbb{E}_{t} [Z_{t+1}u'(c_{t+1})] + (1 - \omega_{t}) R\mathbb{E}_{t} [u'(c_{t+1})] \}$$

Together, they imply two Euler Equations that must be satisfied:

$$1 = R\mathbb{E}_{t} \left[\beta \frac{u'(c_{t+1})}{u'(c_{t})} \right]$$
$$1 = \mathbb{E}_{t} \left[Z_{t+1} \beta \frac{u'(c_{t+1})}{u'(c_{t})} \right]$$

• And using other definition of SDF:

$$1 = R\mathbb{E}_{t} [M_{t+1}]$$
$$1 = \mathbb{E}_{t} [M_{t+1} Z_{t+1}]$$

• Keep this in mind: $\frac{1}{R} = \mathbb{E}_t \left[M_{t+1} \right]$

Portfolio choice (5)

 For each Euler, we open the expectations of the product as the product of the expectation plus the covariance.

• Rearranging, we obtain an expression for excess returns:

$$\mathbb{E}_{t}[Z_{t+1}] - R = -R\beta cov\left[Z_{t+1}, \frac{u'(c_{t+1})}{u'(c_{t})}\right]$$

Excess returns are positive if covariance is negative.

Portfolio choice (6)

• Finally, recall the linearisation of Euler eq.: $\frac{u'(c_{t+1})}{u'(c_t)} = 1 - \gamma \frac{c_{t+1} - c_t}{c_t}$:

$$E_t Z_{t+1} - R = \gamma R \beta cov \left(Z_{t+1}, \frac{c_{t+1} - c_t}{c_t} \right)$$
 (1)

where γ is the coefficient of relative risk aversion.

- But data tells LHS>RHS (Mehra-Prescott, JME 1985, updated data 2003)
- Equity premium puzzle

Portfolio choice (7)

• Start again from:

$$1 = R\mathbb{E}_{t} [M_{t+1}]$$

$$1 = \mathbb{E}_{t} [M_{t+1} Z_{t+1}]$$

Now subtract the first equation from the second:

$$\mathbb{E}_t\left[M_{t+1}(Z_{t+1}-R)\right]=0$$

and define excess returns $\hat{Z}_{t+1} \equiv Z_{t+1} - R$ to get:

$$\mathbb{E}_t\left[M_{t+1}\hat{Z}_{t+1}\right]=0$$

 This is a key moment condition used in empirical asset pricing (Hansen and Singleton, 1982)

Market price of risk and HJ bounds (1)

Consider again:

$$\mathbb{E}_t\left[M_{t+1}\hat{Z}_{t+1}\right]=0$$

• Open the expectation and write as:

$$\mathbb{E}_{t}[M_{t+1}]\mathbb{E}_{t}\left[\hat{Z}_{t+1}\right] = -Cov_{t}\left[M_{t+1}, \hat{Z}_{t+1}\right]$$

 Recall the Cauchy-Schwarz inequality applied to the covariance (this comes from the definition of correlation coefficient between 0 and 1):

$$|Cov_t[M_{t+1}, \xi_{t+1}]| \le \sigma_t[M_{t+1}]\sigma_t[\xi_{t+1}]$$

where σ_t denotes the conditional standard deviation. which also says

$$-\sigma_t[M_{t+1}]\sigma_t[\xi_{t+1}] \le Cov_t[M_{t+1}, \xi_{t+1}] \le \sigma_t[M_{t+1}]\sigma_t[\xi_{t+1}]$$

and in particular:

$$-Cov_t[M_{t+1}, \xi_{t+1}] \le \sigma_t[M_{t+1}]\sigma_t[\xi_{t+1}]$$

Market price of risk and HJ bounds (2)

Substituting back:

$$\mathbb{E}_{t}[\textit{M}_{t+1}]\mathbb{E}_{t}\left[\hat{\textit{Z}}_{t+1}\right] = -\textit{Cov}_{t}\left[\textit{M}_{t+1},\hat{\textit{Z}}_{t+1}\right] \leq \sigma_{t}[\textit{M}_{t+1}]\sigma_{t}\left[\xi_{t+1}\right]$$

Rearrange and obtain a bound on the risk-adjusted return of an asset:

$$\underbrace{\frac{\mathbb{E}_{t}\left[\hat{Z}_{t+1}\right]}{\sigma_{t}\left[\hat{Z}_{t+1}\right]}}_{\text{risk-adjusted return}} \leq \underbrace{\frac{\sigma_{t}[M_{t+1}]}{\mathbb{E}_{t}[M_{t+1}]}}_{\text{market price of risk}}$$

For a final touch, recall that $\mathbb{E}_t[M_{t+1}] = \frac{1}{R}$.

- The market price of risk comes from preferences.
- This conditions is called Hansen-Jaganathan bounds and can be checked empirically.

Market price of risk and HJ bounds (3)

• This expression applied to a risky asset with price p_t and return Z_{t+1} says:

$$p_t \geq rac{1}{R} \left\{ \mathbb{E}_t[Z_{t+1}] - \underbrace{rac{\sigma_t[M_{t+1}]}{\mathbb{E}_t[M_{t+1}]}}_{ ext{market price of risk}} \sigma_t \left[Z_{t+1}
ight]
ight\}$$

• The market price of risk gives us the rate at which the price of the asset falls (relative to the price of the riskless bond $\frac{1}{R}$) as the conditional volatility of its returns increase.

Failure of CRRA to attain HJ bounds (4)

$$\underbrace{\frac{\mathbb{E}_{t}\left[\hat{Z}_{t+1}\right]}{\sigma_{t}\left[\hat{Z}_{t+1}\right]}}_{\text{risk-adjusted return}} \leq \beta \underbrace{\frac{\sigma_{t}\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\right]}{\mathbb{E}_{t}\left[\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\right]}}_{\text{market price of risk}}$$

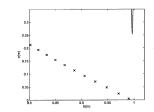


Figure 15.6.1: Solid line: Hansen-Jagannathan volatility bounds for quarterly returns on the value-weighted NYSE and Teasury Bill, 1948-2005. Crosses: Mean and standard deviation for intertemporal marginal rate of substitution for CRRA time separable preferences. The coefficient of relative risk aversion, γ takes on the values 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and the discount factor β =0.995.

Roadmap

- Consumption with a risky asset
- 2 Portfolio choice (many assets)
- 3 Equity premium puzzle
 - Empirical challenges
 - Solutions

Equity Premium Puzzle (1)

- Mehra and Prescott (1985) consider a simple "pure exchange economy", with one representative household that maximises intertemporal consumption $\mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\gamma}}{1-\gamma} \right].$
- One representative firm produces y_t, which is an exogenous stochastic process:

$$y_{t+1} = x_{t+1}y_t$$

- $x_t \in \{(1 + \mu \delta), (1 + \mu + \delta)\}$ is a two state symmetric Markov process with persistence ϕ .
- These parameters match the average, the standard deviation and the first order autocorrelation of the growth rate of per capital consumption.
- In equilibrium the representative household owns the representative firm, and consumes a dividend equal to output: $c_t = y_t$ (no capital, no storage technology, no savings!).

Equity Premium Puzzle (2)

• So the price of this security is:

$$p_{t} = \beta \mathbb{E}_{t} \left\{ \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)} \left(p_{t+1} + d_{t+1}\right) \right\}$$

• Which becomes (recall that $u'(c_t) = c_t^{-\gamma}$):

$$\rho_t = \beta \mathbb{E}_t \left\{ \left(\frac{y_t}{y_{t+1}} \right)^{\gamma} (\rho_{t+1} + y_{t+1}) \right\}$$

• Since we know the law of motion of y_t , we can compute the equilibrium price and return $\mathbb{E}_t[Z_{t+1}]$.

Equity Premium Puzzle (3)

- Suppose now that households can trade a security which guarantees a safe return next period equal to 1.
- Then the price of this security p_t^{safe} must satisfy:

$$\rho_{t}^{safe} = \beta \mathbb{E}_{t} \left\{ \frac{u'\left(c_{t+1}\right)}{u'\left(c_{t}\right)} 1 \right\} = \beta \mathbb{E}_{t} \left\{ \left(\frac{y_{t}}{y_{t+1}}\right)^{\gamma} \right\}$$

and net return is $R=1+r^{\it safe}={1\over p^{\it safe}}$

- If there is no risk, then $y_t = y_{t+1}$ and $p_t^{safe} = \beta$, which implies $R\beta = 1$.
- If y_t is stochastic, more volatility implies higher p_t^{safe} and lower R. For a given volatility more risk aversion implies the same.
- Note: nobody buys and sells this security in equilibrium, because all households are homogeneous (Lucas trick).

Equity Premium Puzzle (4)

Results obtained are consistent with the risk premium as derived before:

$$E_t Z_{t+1} - R = \gamma R \beta cov \left(Z_{t+1}, \frac{c_{t+1} - c_t}{c_t} \right)$$

- Model tells us what risk is: covariance with consumption growth.
- Data to test:
 - ▶ $E_t Z_{t+1} 1$: Return NYSE market index 1889 1978: 6.98%
 - ▶ R-1: Return 3 months T-bill = 0.8% -> equity premium 6.18
 - ▶ $cov\left(Z_{t+1}, \frac{c_{t+1} c_t}{c_t}\right)$: Covariance between stock returns and consumption growth = 0.0027
 - ▶ If $\beta R = 1$ the implied risk aversion is $\gamma = 0.0618/0.0027 = 23$.
 - ▶ But realistic values of γ are between 1 and 4.

Equity Premium Puzzle (5)

	Mean	Variance-Covariance		
		$1 + r_{t+1}^s$	$1 + r_{t+1}^b$	c_{t+1}/c_t
$1 + r_{t+1}^s$	1.070	0.0274	0.00104	0.00219
$ \begin{array}{l} 1 + r_{t+1}^s \\ 1 + r_{t+1}^b \end{array} $	1.010		0.00308	-0.000193
c_{t+1}/c_t	1.018			0.00127

Table 15.3.1: Summary statistics for U.S. annual data, 1889–1978. The quantity $1+r_{t+1}^s$ is the real return to stocks, $1+r_{t+1}^b$ is the real return to relatively riskless bonds, and c_{t+1}/c_t is the growth rate of per capita real consumption of nondurables and services. Source: Kocherlakota (1996a, Table 1), who uses the same data as Mehra and Prescott (1985).

Hansen and Singleton (1982)

• Recall the first order condition for any asset with payoff Z_{t+1}^i :

$$u'(c_t) = \mathbb{E}_t \left[\beta u'(c_{t+1}) Z_{t+1}^i\right]$$

• Divide both sides by $u'(c_t)$ to obtain the moment condition:

$$\mathbb{E}_{t}\left[Z_{t+1}^{i}\frac{\beta u'\left(c_{t+1};\theta\right)}{u'\left(c_{t};\theta\right)}\right]-1=0$$

where i indicates asset i.

- ullet θ are the structural parameters of the utility function.
- Since this is a moment condition, they use (invent) GMM to estimate the parameters θ and β such that the empirical counterpart of this condition is as close as possible to 0.

Hansen and Singleton (1982)

 Moreover, since this FOC is conditional to the current information set, it must be that:

$$\mathbb{E}\left[\left(Z_{t+1}^{i}\frac{\beta u'\left(c_{t+1};\theta\right)}{u'\left(c_{t};\theta\right)}-1\right)y_{t}\right]=0$$

for any time t variable y_t .

- So if the model is correct, any lagged variable y_t is a valid instrument to estimate θ .
- HS use lagged asset returns as instruments (recall Hall) and find:
 - 1 Overidentifying restrictions strongly reject the model
 - \mathbf{Q} θ way too high, just like Mehra-Prescott.
- Conclusion: something's really wrong with the model.
- Interested in reading more: Mehra and Prescott (2003) pretty accessible.

Solutions to Equity Puzzle (homework)

Habits

Disasters

Distorted beliefs

Asymmetric shocks